Potamilus purpuratus - (Lamarck, 1819)
Bleufer
Taxonomic Status: Accepted
Related ITIS Name(s): Potamilus purpuratus (Lamarck, 1819) (TSN 80289)
Unique Identifier: ELEMENT_GLOBAL.2.113749
Element Code: IMBIV37060
Informal Taxonomy: Animals, Invertebrates - Mollusks - Freshwater Mussels
 
Kingdom Phylum Class Order Family Genus
Animalia Mollusca Bivalvia Unionoida Unionidae Potamilus
Check this box to expand all report sections:
Concept Reference
Help
Concept Reference: Turgeon, D.D., J.F. Quinn, Jr., A.E. Bogan, E.V. Coan, F.G. Hochberg, W.G. Lyons, P.M. Mikkelsen, R.J. Neves, C.F.E. Roper, G. Rosenberg, B. Roth, A. Scheltema, F.G. Thompson, M. Vecchione, and J.D. Williams. 1998. Common and scientific names of aquatic invertebrates from the United States and Canada: Mollusks. 2nd Edition. American Fisheries Society Special Publication 26, Bethesda, Maryland: 526 pp.
Concept Reference Code: B98TUR01EHUS
Name Used in Concept Reference: Potamilus purpuratus
Taxonomic Comments: This species was formerly placed in the genus Proptera which was widely used in the 1950s and 1960s. A recent ruling published in the Bulletin of Zoological Nomenclature (ICZN, 1992) recommended retention of the older name Potamilus. In an analysis of systematic relationships of species in the genus Potamilus using DNA sequence data, Roe and Lydeard (1998) concluded that Potamilus is paraphyletic with Leptodea fragilis and Lampsilis ornata nested between Potamilus capax and the remaining Potamilus species (all of which appeared to be monophyletic). This study somewhat cautiously suggests Potamilus purpuratus coloradoensis may represent a species distinct from Potamilus purpuratus as listed doubtfully by Simpson (1914) and, based on genetic distance, P. purpuratus coloradoensis is phenetically more similar to Potamilus alatus (1.2%) than P. purpuratus (1.5%).
Conservation Status
Help

NatureServe Status

Global Status: G5
Global Status Last Reviewed: 14May2009
Global Status Last Changed: 25Nov1996
Rounded Global Status: G5 - Secure
Reasons: This species is found in the Mississippian Region, Gulf Coastal Region, formerly not extending beyond the Guadalupe River system, Texas, but recently found in the Rio Grande System; where it is possibly introduced. It is considered stable throughout most of its range.
Nation: United States
National Status: N5 (16Jul1998)

U.S. & Canada State/Province Status
Due to latency between updates made in state, provincial or other NatureServe Network databases and when they appear on NatureServe Explorer, for state or provincial information you may wish to contact the data steward in your jurisdiction to obtain the most current data. Please refer to our Distribution Data Sources to find contact information for your jurisdiction.
United States Alabama (S5), Arkansas (S4), Georgia (S1), Illinois (SNR), Kansas (S3), Kentucky (S1), Louisiana (S5), Mississippi (S5), Missouri (S4), Nebraska (SX), Oklahoma (S4), Tennessee (S3S4), Texas (S4)

Other Statuses

American Fisheries Society Status: Currently Stable (01Jan1993)

NatureServe Global Conservation Status Factors

Range Extent: 20,000-200,000 square km (about 8000-80,000 square miles)
Range Extent Comments: Range includes Mississippian Region (as far north as the southern tip of Illinois, southeastern Missouri, and western Kentucky, and west into southeastern Kansas, eastern Arkansas, and western Texas), Gulf Coastal Region (southern Georgia to eastern Texas), formerly not extending beyond the Guadalupe River system, Texas (Johnson, 1999; Parmalee and Bogan, 1998), but recently found in the Rio Grande System (Howells et al., 1996); possibly introduced. In the Coosa River basin in Georgia, it is known historically from the Coosa, Etowah, Oostanaula, and Conasauga River drainages but is very rare in the state today (Coosawattee) (Williams and Hughes, 1998).

Area of Occupancy: 2,501 to >12,500 4-km2 grid cells
Area of Occupancy Comments:  

Number of Occurrences: > 300
Number of Occurrences Comments: In Texas, it is present from the Guadalupe River basin into systems to the north and east, (but Johnson (1999) claims specimens from the Rio Grande system are misidentified Cyrtonaias tampicoensis); and in Lake Corpus Christi, Live Oak Co. (likely an introduction) and sites in Val Verde Co. in the Rio Grande (Howells et al., 1996) with expansion into Lake Corpus Christi and the Nueces River upstream (Howells, 1997). During surveys of the Village Creek drainage of Hardin, Tyler, and Polk Cos. in southeast Texas in 2001-2002, this species was found in 4 sites (of 22 surveyed) (6 spms.) (Bordelon and Harrel, 2004). In Mississippi, it occurs in the Mississippi River North and South, Big Black (Hartfield and Rummel, 1985), Yazoo, Lake Pontchartrain, Pearl, Pascagoula, and Tombigbee drainages (Jones et al., 2005). It is widespread and common throughout all of Louisiana (Vidrine, 1993; Brown and Banks, 2001). This species was recorded from the Strong River in Mississippi in 2001 (Darden et al., 2002). It is in the St. Francis (Ahlstedt and Jenkinson, 1991), Cache and White Rivers, Arkansas (Christian, 1995; Christian et al., 2005; Gordon, 1982; Gordon et al., 1994); Ouachita (Posey et al., 1996) and lower Arkansas (Gordon, 1985). It also is present in the Poteau River in Arkansas (Vaughn and Spooner, 2004), but is extirpated from the Buffalo National River (Harris, 1996). Ahlstedt and Jenkinson (1991) documented it in the St. Francis River in Arkansas. In the Coosa River basin in Georgia, it is known historically from the Coosa, Etowah, Oostanaula, and Conasauga River drainages but is very rare in the state today (Coosawattee) (Williams and Hughes, 1998). In Tennessee, it is restricted to the mainstem of the Mississippi River and direct tributaries including the Wolf Loosahatchie, and Hatchie (Parmalee and Bogan, 1998). In Alabama, it is fairly common but restricted to the Mobile basin where it is widespread (Mirarchi, 2004; Williams et al., 2008); including Alabama and Tombigbee (McGregor et al., 1999). This species was recently collected from the Black Warrior River in Tuscaloosa and Greene/Hale Cos. and upper Tombigbee River in Sumter and Greene Cos., Alabama (Williams et al., 1992). In Kentucky it is sporadic in the Mississippi and lower Ohio Rivers (Cicerello and Schuster, 2003). It is a peripheral species in Illinois with a historical record from the Wabash River in nearby Posey Co., Indiana, and a post-1965 record from the Mississippi River in nearby Missouri (Oesch, 1984; Cummings and Mayer, 1997); also Spring River, Missouri (Branson, 1966). In Kansas, it is found in the Neosho and Verdigris River basins, including smaller tributaries of the Cottonwood, Fall, and Elk Rivers and is also present in the Spring River below Empire Lake (Couch, 1997). A thorough review of literature, museum specimens, and recent survey work in the Big Blue River system of southeastern Nebraska and northeastern Kansas revealed this species was represented by sub-fossil material only and is likely extirpated from the basin (Hoke, 2005). Branson (1984) lists Oklahoma distribution as "Oklahoma City"; Chickaskia River; Washita, Blue, Lower and Clear Boggy, Kiamichi, Little, Poteau, Arkansas, Verdigris (Boeckman and Bidwell, 2008), Illinois and Chickashia Rivers and Bird, Salt, Black Bear, Fourteenmile, Pryor, Cache, Caston, Bluff, and Big Cabin creeks; Blue, Little (Vaughn and Taylor, 1999), Mountain Fork, Kiamichi, and Glover Rivers and Gates Creek; Mountain Fork River; Big and Middle Caney Rivers and Bird and Salt Creeks (Osage Co.); Neosho River; Blue River, Spavinaw and Medicine Creeks and Ft. Gibson and Tenkiller Ferry Reservoirs (see also Vaughn, 2000).

Population Size: >1,000,000 individuals
Population Size Comments: It is locally common in the Mobile Basin (Williams et al., 2008).

Number of Occurrences with Good Viability/Integrity: Unknown
Viability/Integrity Comments: This species was recorded from the Strong River in Mississippi in 2001 in high numbers (Darden et al., 2002). It is locally common in the Mobile Basin (Williams et al., 2008).

Short-term Trend: Relatively Stable (<=10% change)

Long-term Trend: Decline of <30% to increase of 25%

Environmental Specificity: Broad. Generalist or community with all key requirements common.
Environmental Specificity Comments: This species is generally found in quiet or slow-moving waters in a mud or gravel bottom (Parmalee and Bogan, 1998). It inhabits rivers of all sizes and large lakes.

Other NatureServe Conservation Status Information

Distribution
Help
Global Range: (20,000-200,000 square km (about 8000-80,000 square miles)) Range includes Mississippian Region (as far north as the southern tip of Illinois, southeastern Missouri, and western Kentucky, and west into southeastern Kansas, eastern Arkansas, and western Texas), Gulf Coastal Region (southern Georgia to eastern Texas), formerly not extending beyond the Guadalupe River system, Texas (Johnson, 1999; Parmalee and Bogan, 1998), but recently found in the Rio Grande System (Howells et al., 1996); possibly introduced. In the Coosa River basin in Georgia, it is known historically from the Coosa, Etowah, Oostanaula, and Conasauga River drainages but is very rare in the state today (Coosawattee) (Williams and Hughes, 1998).

U.S. States and Canadian Provinces

Due to latency between updates made in state, provincial or other NatureServe Network databases and when they appear on NatureServe Explorer, for state or provincial information you may wish to contact the data steward in your jurisdiction to obtain the most current data. Please refer to our Distribution Data Sources to find contact information for your jurisdiction.
Color legend for Distribution Map
Endemism: endemic to a single nation

U.S. & Canada State/Province Distribution
United States AL, AR, GA, IL, KS, KY, LA, MO, MS, NEextirpated, OK, TN, TX

Range Map
No map available.


U.S. Distribution by County Help
State County Name (FIPS Code)
AL Baldwin (01003), Bibb (01007), Blount (01009)*, Clarke (01025), Dallas (01047), Greene (01063), Jefferson (01073), Monroe (01099), Montgomery (01101), Perry (01105), Pickens (01107), Shelby (01117), Sumter (01119), Tuscaloosa (01125), Wilcox (01131)
KY Ballard (21007), Carlisle (21039), Fulton (21075), Hickman (21105), Livingston (21139), McCracken (21145)
MO Bollinger (29017), Butler (29023), Madison (29123), Mississippi (29133), Ripley (29181), St. Francois (29187), Stoddard (29207), Taney (29213), Wayne (29223)
OK Craig (40035), Nowata (40105), Ottawa (40115)
* Extirpated/possibly extirpated
U.S. Distribution by Watershed Help
Watershed Region Help Watershed Name (Watershed Code)
03 Upper Alabama (03150201)+, Cahaba (03150202)+, Middle Alabama (03150203)+, Lower Alabama (03150204)+, Sipsey (03160107)+, Locust (03160111)+, Sucarnoochee (03160202)+
05 Lower Ohio (05140206)+
07 Whitewater (07140107)+
08 Lower Mississippi-Memphis (08010100)+, Bayou De Chien-Mayfield (08010201)+, New Madrid-St. Johns (08020201)+, Upper St. Francis (08020202)+, Lower St. Francis (08020203)+
11 Bull Shoals Lake (11010003)+, Upper Black (11010007)+, Current (11010008)+, Middle Verdigris (11070103)+, Lake O' the Cherokees (11070206)+, Spring (11070207)+
+ Natural heritage record(s) exist for this watershed
* Extirpated/possibly extirpated
Ecology & Life History
Help
Reproduction Comments: Glochidial hosts include Aplodinotus grunniens (freshwater drum) (Surber, 1913; Wilson, 1916; Howard and Anson, 1922) as well as Lepomis gulosus (warmouth), and Notemigonus chrysoleucas (golden shiner) (Howells, 1995).
Habitat Type: Freshwater
Non-Migrant: N
Locally Migrant: N
Long Distance Migrant: N
Riverine Habitat(s): BIG RIVER, CREEK, Low gradient, MEDIUM RIVER, Pool
Lacustrine Habitat(s): Shallow water
Special Habitat Factors: Benthic
Habitat Comments: This species is generally found in quiet or slow-moving waters in a mud or gravel bottom (Parmalee and Bogan, 1998). It inhabits rivers of all sizes and large lakes.
Economic Attributes Not yet assessed
Help
Management Summary Not yet assessed
Help
Population/Occurrence Delineation
Help
Group Name: Freshwater Mussels

Use Class: Not applicable
Minimum Criteria for an Occurrence: Occurrences are based on some evidence of historical or current presence of single or multiple specimens, including live specimens or recently dead shells (i.e., soft tissue still attached and/or nacre still glossy and iridescent without signs of external weathering or staining), at a given location with potentially recurring existence. Weathered shells constitute a historic occurrence. Evidence is derived from reliable published observation or collection data; unpublished, though documented (i.e. government or agency reports, web sites, etc.) observation or collection data; or museum specimen information.
Mapping Guidance: Based on the separation distances outlined herein, for freshwater mussels in STANDING WATER (or backwater areas of flowing water such as oxbows and sloughs), all standing water bodies with either (1) greater than 2 km linear distance of unsuitable habitat between (i.e. lotic connections), or (2) more than 10 km of apparently unoccupied though suitable habitat (including lentic shoreline, linear distance across water bodies, and lentic water bodies with proper lotic connections), are considered separate element occurrences. Only the largest standing water bodies (with 20 km linear shoreline or greater) may have greater than one element occurrence within each. Multiple collection or observation locations in one lake, for example, would only constitute multiple occurrences in the largest lakes, and only then if there was some likelihood that unsurveyed areas between collections did not contain the element.

For freshwater mussels in FLOWING WATER conditions, occurrences are separated by a distance of more than 2 stream km of unsuitable habitat, or a distance of more than 10 stream km of apparently unoccupied though suitable habitat. Standing water between occurrences is considered suitable habitat when calculating separation distance for flowing water mussel species unless dispersal barriers (see Separation Barriers) are in place.

Several mussel species in North America occur in both standing and flowing water (see Specs Notes). Calculation of separation distance and determination of separation barriers for these taxa should take into account the environment in which the element was collected. Juvenile mussels do not follow this pattern and juveniles are typically missed by most standard sampling methods (Hastie and Cosgrove, 2002; Neves and Widlak, 1987), therefore juvenile movement is not considered when calculating separation distance.

Separation Barriers: Separation barriers within standing water bodies are based solely on separation distance (see Separation Distance-suitable, below). Separation barriers between standing water bodies and within flowing water systems include lack of lotic connections, natural barriers such as upland habitat, absence of appropriate species specific fish hosts, water depth greater than 10 meters (Cvancara, 1972; Moyle and Bacon, 1969) or anthropogenic barriers to water flow such as dams or other impoundments and high waterfalls.
Separation Distance for Unsuitable Habitat: 2 km
Separation Distance for Suitable Habitat: 10 km
Alternate Separation Procedure: None
Separation Justification: Adult freshwater mussels are largely sedentary spending their entire lives very near to the place where they first successfully settled (Coker et al., 1921; Watters, 1992). Strayer (1999) demonstrated in field trials that mussels in streams occur chiefly in flow refuges, or relatively stable areas that displayed little movement of particles during flood events. Flow refuges conceivably allow relatively immobile mussels to remain in the same general location throughout their entire lives. Movement occurs with the impetus of some stimulus (nearby water disturbance, physical removal from the water such as during collection, exposure conditions during low water, seasonal temperature change or associated diurnal cycles) and during spawning. Movement is confined to either vertical movement burrowing deeper into sediments though rarely completely beneath the surface, or horizontal movement in a distinct path often away from the area of stimulus. Vertical movement is generally seasonal with rapid descent into the sediment in autumn and gradual reappearance at the surface during spring (Amyot and Downing, 1991; 1997). Horizontal movement is generally on the order of a few meters at most and is associated with day length and during times of spawning (Amyot and Downing, 1997). Such locomotion plays little, if any, part in the distribution of freshwater mussels as these limited movements are not dispersal mechanisms. Dispersal patterns are largely speculative but have been attributed to stream size and surface geology (Strayer, 1983; Strayer and Ralley, 1993; van der Schalie, 1938), utilization of flow refuges during flood stages (Strayer, 1999), and patterns of host fish distribution during spawning periods (Haag and Warren, 1998; Watters, 1992). Lee and DeAngelis (1997) modeled the dispersal of freshwater into unoccupied habitats as a traveling wave front with a velocity ranging from 0.87 to 2.47 km/year (depending on mussel life span) with increase in glochidial attachment rate to fish having no effect on wave velocity.

Nearly all mussels require a host or hosts during the parasitic larval portion of their life cycle. Hosts are usually fish, but a few exceptional species utilize amphibians as hosts (Van Snik Gray et al., 2002; Howard, 1915) or may metamorphose without a host (Allen, 1924; Barfield et al., 1998; Lefevre and Curtis, 1911; 1912). Haag and Warren (1998) found that densities of host generalist mussels (using a variety of hosts from many different families) and displaying host specialists (using a small number of hosts usually in the same family but mussel females have behavioral modifications to attract hosts to the gravid female) were independent of the densities of their hosts. Densities of non-displaying host specialist mussels (using a small number of hosts usually in the same family but without host-attracting behavior) were correlated positively with densities of their hosts. Upstream dispersal of host fish for non-displaying host specialist mussels could, theoretically, transport mussel larvae (glochidia) over long distances through unsuitable habitat, but it is unlikely that this occurs very often. D. Strayer (personal communication) suggested a distance of at least 10 km, but a greater distance between occurrences may be necessary to constitute genetic separation of populations. As such, separation distance is based on a set, though arbitrary, distance between two known points of occurrence.

Date: 18Oct2004
Author: Cordeiro, J.
Notes: Contact Jay Cordeiro (jay_cordeiro@natureserve.org) for a complete list of freshwater mussel taxa sorted by flow regime.
Population/Occurrence Viability
Help
U.S. Invasive Species Impact Rank (I-Rank) Not yet assessed
Help
Authors/Contributors
Help
NatureServe Conservation Status Factors Edition Date: 14May2009
NatureServe Conservation Status Factors Author: Cordeiro, J.
Element Ecology & Life History Edition Date: 14Apr2007
Element Ecology & Life History Author(s): Cordeiro, J.

Zoological data developed by NatureServe and its network of natural heritage programs (see Local Programs) and other contributors and cooperators (see Sources).

References
Help
  • Ahlstedt, S.A. and J.J. Jenkinson. 1991. Distribution and abundance of Potamilus capax and other freshwater mussels in the St. Francis River system, Arkansas and Missouri, U.S.A. Walkerana, 5(14): 225-261.

  • Bordelon, V.L. and R.C. Harrel. 2004. Freshwater mussels (Bivalvia: Unionidae) of the Village Creek drainage basin in southeast Texas. The Texas Journal of Science, 56(1): 63-72.

  • Branson, B.A. 1966a. A partial biological survey of the Spring River drainage in Kansas, Oklahoma and Missouri. Part I, collecting sites, basic limnological data, and mollusks. Transactions of the Kansas Academy of Science 69(3/4): 242-293.

  • Christian, A.D. 1995. Analysis of the commercial mussel beds in the Cache and White Rivers in Arkansas. M.S. Thesis, Arkansas State University. 210 pp.

  • Cicerello, R.R. and G.A. Schuster. 2003. A guide to the freshwater mussels of Kentucky. Kentucky State Nature Preserves Commission Scientific and Technical Series 7:1-62.

  • Darden, R.I., T.L. Darden, and B.R. Kreiser. 2002. Mussel fauna of the Strong River, Mississippi. Journal of Freshwater Ecology, 17(4): 651-653.

  • Gordon, M.E., S.W. Chordas, G.L. Harp. and A.V. Brown. 1994. Aquatic Mollusca of the White River National Wildlife Refuge, Arkansas, U.S.A. Walkerana, 7(17/18): 1-9

  • Harris, J.L. 1996. The freshwater mussel resources of the Buffalo National River, Arkansas: Phase 1: qualitative survey: location, species composition, and status of mussel beds. Report to U.S. department of the Interior, Buffalo National River, Harrison, Arkansas. 19 pp. + app.

  • Hartfield, P.D. and R.G. Rummel. 1985. Freshwater mussels (Unionidae) of the Big Black River, Mississippi. The Nautilus, 99(4): 116-119.

  • Howard, A.D. 1915. Some exceptional cases of breeding among the Unionidae. The Nautilus 29:4-11.

  • Howard, A.D. and B.J. Anson. 1922. Phases in the parasitism of the Unionidae. Journal of Parasitology, 9(2): 68-82.

  • Howells, R.G. 1995. Rio Grande bleuffer. Info-Mussel Newsletter, 3(1): 1.

  • Howells, R.G. 1997e. Range extension of the freshwater mussel Potamilus purpuratus (Bivalvia: Unionidae) in Texas. Texas Journal of Science 49(1):79-82.

  • International Commission on Zoological Nomenclature (ICZN). 1992. Opinion 1665, Potamilus Rafinesque, 1818 (Mollusca, Bivalvia): not suppressed. Bulletin of Zoological Nomenclature, 49(1): 81-82.

  • Johnson, R.I. 1999. Unionidae of the Rio Grande (Rio Bravo del Norte) system of Texas and Mexico. Occasional Papers on Mollusks, 6(77): 1-65.

  • Kesler, D. H., D. Manning, N. Van Tol, L. Smith, and B. Sepanski. 2001. Freshwater mussels (Unionidae) of the Wolf River in western Tennessee and Mississippi. Journal of the Tennessee Academy of Science 76(1):38-46.

  • Lefevre, G. and W.T. Curtis. 1912. Studies on the reproduction and artificial propogation of fresh-water mussels. Bulletin of the Bureau of Fisheries 30:102-201.

  • McGregor, S.W., T.E. Shepard, T.D. Richardson, and J.F. Fitzpatrick, Jr. 1999. A survey of the primary tributaries of the Alabama and Lower Tombigbee rivers for freshwater mussels, snails, and crayfish. Geological Survey of Alabama, Circular 196. 29 pp.

  • Mirarchi, R.E., et al. 2004a. Alabama Wildlife. Volume One: A Checklist of Vertebrates and Selected Invertebrates: Aquatic Mollusks, Fishes, Amphibians, Reptiles, Birds, and Mammals. University of Alabama Press: Tuscaloosa, Alabama. 209 pp.

  • Moyle, P. and J. Bacon. 1969. Distribution and abundance of molluscs in a fresh water environment. Journal of the Minnesota Academy of Science 35(2/3):82-85.

  • Oesch, R.D. 1984a. Missouri Naiades: a Guide to the Mussels of Missouri. Jefferson City, Missouri: Conservation Commision of the State of Missouri. 270 pp.

  • Parmalee, P.W. and A.E. Bogan. 1998. The Freshwater Mussels of Tennessee. University of Tennessee Press: Knoxville, Tennessee. 328 pp.

  • Parmalee, P.W. and A.E. Bogan. 1998. The freshwater mussels of Tennessee. University of Tennessee Press, Knoxville, Tennesee. 328 pp.

  • Posey, W.R., III, J.L. Harris, and G.L. Harp. 1996b. An evaluation of the mussel community in the Lower Ouachita River. Report to the Arkansas Game and Fish Commission, Arkansas. 28 pp.

  • Roe, K.J. and C. Lydeard. 1998. Molecular systematics of the freshwater mussel genus Potamilus (Bivalvia: Unionidae). Malacologia, 39(1-2): 195-205.

  • Simpson, C.T. 1914. A Descriptive Catalogue of the Naiades or Pearly Fresh-water Mussels. Bryant Walker: Detroit, Michigan. 1540 pp.

  • Strayer, D. 1983. The effects of surface geology and stream size on freshwater mussel (Bivalvia, Unionidae) distribution in southeastern Michigan, U.S.A. Freshwater Biology 13:253-264.

  • Strayer, D.L. 1999a. Use of flow refuges by unionid mussels in rivers. Journal of the North American Benthological Society 18(4):468-476.

  • Strayer, D.L. and J. Ralley. 1993. Microhabitat use by an assemblage of stream-dwelling unionaceans (Bivalvia) including two rare species of Alasmidonta. Journal of the North American Benthological Society 12(3):247-258.

  • Surber, T. 1913. Notes on the natural hosts of fresh-water mussels. Bulletin of the United States Bureau of Fisheries, 32: 101-116.

  • Turgeon, D.D., J.F. Quinn, Jr., A.E. Bogan, E.V. Coan, F.G. Hochberg, W.G. Lyons, P.M. Mikkelsen, R.J. Neves, C.F.E. Roper, G. Rosenberg, B. Roth, A. Scheltema, F.G. Thompson, M. Vecchione, and J.D. Williams. 1998. Common and scientific names of aquatic invertebrates from the United States and Canada: Mollusks. 2nd Edition. American Fisheries Society Special Publication 26, Bethesda, Maryland: 526 pp.

  • Van der Schalie, H. 1938a. The naiad fauna of the Huron River in southeastern Michigan. Miscellaneous Publication of the Museum of Zoology, University of Michigan 40:7-78.

  • Vaughn, C.C. 2000. Changes in the mussel fauna of the middle Red River drainage: 1910 - present. Pages 225-232 in R.A. Tankersley, D.I. Warmolts, G.T. Watters, B.J. Armitage, P.D. Johnson, and R.S. Butler (eds.). Freshwater Mollusk Symposia Proceedings. Ohio Biological Survey, Columbus, Ohio. 274 pp.

  • Vaughn, C.C., and C.M. Taylor. 1999. Impoundments and the decline of freshwater mussels: a case study of an extinction gradient. Conservation Biology 13(4):912-920.

  • Watters, G.T. 1992a. Unionids, fishes, and the species-area curve. Journal of Biogeography 19:481-490.

  • Williams, J. D., A. E. Bogan, R. S. Butler, K. S. Cummings, J. T. Garner, J. L. Harris, N. A. Johnson, and G. T. Watters. 2017. A revised list of the freshwater mussels (Mollusca: Bivalvia: Unionida) of the United States and Canada. Freshwater Mollusk Biology and Conservation 20:33-58.

  • Williams, J. D., A. E. Bogan, and J. T Garner. 2008. Freshwater mussels of Alabama & the Mobile Basin in Georgia, Mississippi, & Tennessee. University of Alabama Press, Tuscaloosa, Alabama. 908 pages.

  • Williams, J.D., M.L. Warren, Jr., K.S. Cummings, J.L. Harris, and R.J. Neves. 1993b. Conservation status of freshwater mussels of the United States and Canada. Fisheries 18(9): 6-22.

  • Williams, J.D., S.L.H. Fuller, and R. Gracea. 1992a. Effects of impoundment on freshwater mussels (Mollusca: Bivalvia: Unionidae) in the main channel of the Black Warrior and Tombigbee Rivers in western Alabama. Bulletin of the Alabama Museum of Natural History 13:1-10.

  • Wilson, C. B. 1916. Copepod parasites of fresh-water fishes and their economic relations to mussel glochidia. Bulletin of the U.S. Bureau of Fisheries. [Issued separately as U.S. Bureau of Fisheries Document 824], 34: 333-374 + 15 plates.

References for Watershed Distribution Map
  • Boeckman, C.J. and J.R. Bidwell. 2008. Status of freshwater mussels (Unionidae) in the Oklahoma section of the Verdigris River after introduction of the zebra mussel (Dreissena polymorpha Pallas, 1771). American Midland Naturalist 25:1-8.

  • Branson, B.A. 1984. The mussels (Unionacea: Bivalvia) of Oklahoma- Part 3: Lampsilini. Proceedings of the Oklahoma Academy of Science, 64: 20-36.

  • Brown, K.M. and P.D. Banks. 2001. The conservation of unionid mussels in Louisiana rivers: diversity, assemblage composition and substrate use. Aquatic Conservation: Marine and Freshwater Ecosystems, 11(3): 189-198.

  • Christian, A.D., J.L. Harris, W.R. Posey, J.F. Hockmuth, and G.L. Harp. 2005. Freshwater mussel (Bivalvia: Unionidae) assemblages of the lower Cache River, Arkansas. Southeastern Naturalist, 4(3): 487-512.

  • Couch, K.J. 1997. An Illustrated Guide to the Unionid Mussels of Kansas. Karen J. Couch. [Printed in Olathe, Kansas]. 124 pp.

  • Cummings, K.S. and C.A. Mayer. 1997. Distributional checklist and status of Illinois freshwater mussels (Mollusca: Unionacea). Pages 129-145 in: K.S. Cummings, A.C. Buchanan, C.A. Mayer, and T.J. Naimo (eds.) Conservation and management of freshwater mussels II: initiatives for the future. Proceedings of a UMRCC Symposium, October 1995, St. Louis, Missouri. Upper Mississippi River Conservation Committee, Rock Island, Illinois.

  • Galbraith, H.S., D.E. Spooner, and C.C. Vaughn. 2008. Status of rare and endangered freshwater mussels in southeastern Oklahoma. The Southwestern Naturalist, 53(1): 45-50.

  • Gordon, M.E. 1982. Mollusca of the White River, Arkansas and Missouri. The Southwestern Naturalist, 27(3): 347-352.

  • Gordon, M.E. 1985. Mollusca of Frog Bayou, Arkansas. The Nautilus, 99(1): 6-9.

  • Hoke, E. 2005b. The unionid mussels (Mollusca: Bivalvia: Unionidae) of the Big Blue River basin of northeastern Kansas and southeastern Nebraska. Transactions of the Nebraska Academy of Sciences, 30: 33-57.

  • Howells, R.G., R.W. Neck, and H.D. Murray. 1996. Freshwater Mussels of Texas. Texas Parks and Wildlife Press: Austin, Texas. 218 pp.

  • Jones, R.L., W.T. Slack, and P.D. Hartfield. 2005. The freshwater mussels (Mollusca: Bivalvia: Unionidae) of Mississippi. Southeastern Naturalist, 4(1): 77-92.

  • Vaughn, C.C. and D.E. Spooner. 2004. Status of the mussel fauna of the Poteau River and implications for commercial harvest. American Midland Naturalist, 152: 336-346.

  • Vidrine, M.F. 1993. The Historical Distributions of Freshwater Mussels in Louisiana. Gail Q. Vidrine Collectibles: Eunice, Louisiana. xii + 225 pp. + 20 plates.

  • Williams, J.D. and M.H. Hughes. 1998. Freshwater mussels of selected reaches of the main channel rivers in the Coosa drainage of Georgia. U.S. Geological report to U.S. Army Corps of Engineers, Mobile District, Alabama. 21 pp.

  • Williams, J.D., A.E. Bogan, and J.T. Garner. 2008. Freshwater Mussels of Alabama & the Mobile Basin in Georgia, Mississippi & Tennessee. University of Alabama Press: Tuscaloosa, Alabama. 908 pp.

  • Wolf, C. and B. Stark. 2008. Survey of freshwater mussels (Bivalvia: Unionoidea) in the Marais des Cygnes River, Fall River, and Grouse Creek. Transactions of the Kansas Academy of Science 111(1/2):1-20.

Use Guidelines & Citation

Use Guidelines and Citation

The Small Print: Trademark, Copyright, Citation Guidelines, Restrictions on Use, and Information Disclaimer.

Note: All species and ecological community data presented in NatureServe Explorer at http://explorer.natureserve.org were updated to be current with NatureServe's central databases as of March 2019.
Note: This report was printed on

Trademark Notice: "NatureServe", NatureServe Explorer, The NatureServe logo, and all other names of NatureServe programs referenced herein are trademarks of NatureServe. Any other product or company names mentioned herein are the trademarks of their respective owners.

Copyright Notice: Copyright © 2019 NatureServe, 2511 Richmond (Jefferson Davis) Highway, Suite 930, Arlington, VA 22202, U.S.A. All Rights Reserved. Each document delivered from this server or web site may contain other proprietary notices and copyright information relating to that document. The following citation should be used in any published materials which reference the web site.

Citation for data on website including State Distribution, Watershed, and Reptile Range maps:
NatureServe. 2019. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available http://explorer.natureserve.org. (Accessed:

Citation for Bird Range Maps of North America:
Ridgely, R.S., T.F. Allnutt, T. Brooks, D.K. McNicol, D.W. Mehlman, B.E. Young, and J.R. Zook. 2003. Digital Distribution Maps of the Birds of the Western Hemisphere, version 1.0. NatureServe, Arlington, Virginia, USA.

Acknowledgement Statement for Bird Range Maps of North America:
"Data provided by NatureServe in collaboration with Robert Ridgely, James Zook, The Nature Conservancy - Migratory Bird Program, Conservation International - CABS, World Wildlife Fund - US, and Environment Canada - WILDSPACE."

Citation for Mammal Range Maps of North America:
Patterson, B.D., G. Ceballos, W. Sechrest, M.F. Tognelli, T. Brooks, L. Luna, P. Ortega, I. Salazar, and B.E. Young. 2003. Digital Distribution Maps of the Mammals of the Western Hemisphere, version 1.0. NatureServe, Arlington, Virginia, USA.

Acknowledgement Statement for Mammal Range Maps of North America:
"Data provided by NatureServe in collaboration with Bruce Patterson, Wes Sechrest, Marcelo Tognelli, Gerardo Ceballos, The Nature Conservancy-Migratory Bird Program, Conservation International-CABS, World Wildlife Fund-US, and Environment Canada-WILDSPACE."

Citation for Amphibian Range Maps of the Western Hemisphere:
IUCN, Conservation International, and NatureServe. 2004. Global Amphibian Assessment. IUCN, Conservation International, and NatureServe, Washington, DC and Arlington, Virginia, USA.

Acknowledgement Statement for Amphibian Range Maps of the Western Hemisphere:
"Data developed as part of the Global Amphibian Assessment and provided by IUCN-World Conservation Union, Conservation International and NatureServe."

NOTE: Full metadata for the Bird Range Maps of North America is available at:
http://www.natureserve.org/library/birdDistributionmapsmetadatav1.pdf.

Full metadata for the Mammal Range Maps of North America is available at:
http://www.natureserve.org/library/mammalsDistributionmetadatav1.pdf.

Restrictions on Use: Permission to use, copy and distribute documents delivered from this server is hereby granted under the following conditions:
  1. The above copyright notice must appear in all copies;
  2. Any use of the documents available from this server must be for informational purposes only and in no instance for commercial purposes;
  3. Some data may be downloaded to files and altered in format for analytical purposes, however the data should still be referenced using the citation above;
  4. No graphics available from this server can be used, copied or distributed separate from the accompanying text. Any rights not expressly granted herein are reserved by NatureServe. Nothing contained herein shall be construed as conferring by implication, estoppel, or otherwise any license or right under any trademark of NatureServe. No trademark owned by NatureServe may be used in advertising or promotion pertaining to the distribution of documents delivered from this server without specific advance permission from NatureServe. Except as expressly provided above, nothing contained herein shall be construed as conferring any license or right under any NatureServe copyright.
Information Warranty Disclaimer: All documents and related graphics provided by this server and any other documents which are referenced by or linked to this server are provided "as is" without warranty as to the currentness, completeness, or accuracy of any specific data. NatureServe hereby disclaims all warranties and conditions with regard to any documents provided by this server or any other documents which are referenced by or linked to this server, including but not limited to all implied warranties and conditions of merchantibility, fitness for a particular purpose, and non-infringement. NatureServe makes no representations about the suitability of the information delivered from this server or any other documents that are referenced to or linked to this server. In no event shall NatureServe be liable for any special, indirect, incidental, consequential damages, or for damages of any kind arising out of or in connection with the use or performance of information contained in any documents provided by this server or in any other documents which are referenced by or linked to this server, under any theory of liability used. NatureServe may update or make changes to the documents provided by this server at any time without notice; however, NatureServe makes no commitment to update the information contained herein. Since the data in the central databases are continually being updated, it is advisable to refresh data retrieved at least once a year after its receipt. The data provided is for planning, assessment, and informational purposes. Site specific projects or activities should be reviewed for potential environmental impacts with appropriate regulatory agencies. If ground-disturbing activities are proposed on a site, the appropriate state natural heritage program(s) or conservation data center can be contacted for a site-specific review of the project area (see Visit Local Programs).

Feedback Request: NatureServe encourages users to let us know of any errors or significant omissions that you find in the data through (see Contact Us). Your comments will be very valuable in improving the overall quality of our databases for the benefit of all users.